Hydrologic Model Manager

Short Name	LASCAM
Long Name	Large Scale Catchment Model
Description	
Model Type	Conceptual model
Model Objectives	To predict the impact of land use and climate changes on the daily trends of streamflow and water quality (salinity, sediment, nutrients, etc.) in large catchments over long periods.
Agency _Office	Centre for Water Research, University of Western Australia, Nedlands, Australia
Tech Contact	Dr. M. Sivalapan
Model Structure	The model is a complex conceptual one, the basic building blocks being subcatchments organized around the river network. All hydrological and water quality processes are modeled at the sub-catchment scale.
Interception	
Groundwater	
Snowmelt	
Precipitation	
Evapo-transpiration	
Infiltration	
Model Paramters	87 parameters
Spatial Scale	100 to 10,000 square meters
Temporal Scale	Daily
Input Requirements	Topographic, hydrometeorological, rainfall, soils, land use, basin geomorphological, and water quality.
Computer Requirements	PC with windows
Model Output	Streamflow and water quality
Parameter Estimatn Model Calibrtn	Parameters are obtained by fitting an doptimization
Model Testing Verification	Verified on a number of catchments in Australia and outside
Model Sensitivity	Not reported
Model Reliabilty	Not reported but excellent model simulations have been obtained.
Model Application	Swan-Avon River basin and Salmon basin in Australia; a tropical catchment in Malaysia
Documentation	Not available in public domain but it can be obtained from Dr. Sivapalan
Other Comments	The model is comprehensive and produces excellent results. References:
	Sivapalan, M., Viney, N. R. and Ruprecht, J. K., 1996. Water and salt balance modeling to predict the effects of land use changes in forested catchments: 1. small catchment water balance model. Hydrological Processes, Vol. 10, pp. 393-411.

ı	Sivapalan, M., Viney, N. R. and Ruprecht, J. K., 1996. Water and salt balance
	modeling to predict the effects of land use changes in forested catchments:2.
ı	Coupled model of water and salt balances. Hydrological processes, Vol. 10,
ı	pp. 413-428.

Sivapalan, M., Viney, N. R. and Ruprecht, J. K., 1996. Water and salt balance modeling to predict the effects of land use changes in forested catchments:3. The large catchment model. Hydrological Processes, Vol. 10, pp. 429-446.

Date of Submission	5/11/2001 10:33:44 AM
Developer	
Technical Contact	
Contact Organization	